Fast Hankel tensor-vector product and its application to exponential data fitting
نویسندگان
چکیده
This paper is contributed to a fast algorithm for Hankel tensor–vector products. First, we explain the necessity of fast algorithms for Hankel and block Hankel tensor–vector products by sketching the algorithm for both one-dimensional and multi-dimensional exponential data fitting. For proposing the fast algorithm, we define and investigate a special class of Hankel tensors that can be diagonalized by the Fourier matrices, which is called anti-circulant tensors. Then, we obtain a fast algorithm for Hankel tensor–vector products by embedding a Hankel tensor into a larger anti-circulant tensor. The computational complexity is about O.mn logmn/ for a square Hankel tensor of order m and dimension n, and the numerical examples also show the efficiency of this scheme. Moreover, the block version for multi-level block Hankel tensors is discussed. Copyright © 2015 John Wiley & Sons, Ltd.
منابع مشابه
Positive Semi-definiteness of Generalized Anti-circulant Tensors
Anti-circulant tensors have applications in exponential data fitting. They are special Hankel tensors. In this paper, we extend the definition of anti-circulant tensors to generalized anticirculant tensors by introducing a circulant index r such that the entries of the generating vector of a Hankel tensor are circulant with module r. In the special case when r=n, where n is the dimension of the...
متن کاملNew Improvement in Interpretation of Gravity Gradient Tensor Data Using Eigenvalues and Invariants: An Application to Blatchford Lake, Northern Canada
Recently, interpretation of causative sources using components of the gravity gradient tensor (GGT) has had a rapid progress. Assuming N as the structural index, components of the gravity vector and gravity gradient tensor have a homogeneity degree of -N and - (N+1), respectively. In this paper, it is shown that the eigenvalues, the first and the second rotational invariants of the GGT (I1 and ...
متن کاملOn the character space of vector-valued Lipschitz algebras
We show that the character space of the vector-valued Lipschitz algebra $Lip^{alpha}(X, E)$ of order $alpha$ is homeomorphic to the cartesian product $Xtimes M_E$ in the product topology, where $X$ is a compact metric space and $E$ is a unital commutative Banach algebra. We also characterize the form of each character on $Lip^{alpha}(X, E)$. By appealing to the injective tensor product, we the...
متن کاملDelayed exponential fitting by best tensor rank-(R1, R2, R3) approximation
We present a subspace-based scheme for the estimation of the poles (angular-frequencies and damping-factors) of a sum of damped and delayed sinusoids. In our model each component is supported over a different time frame, depending on the delay parameter. Classical subspace based methods are not suited to handle signals with varying time-supports. In this contribution, we propose a solution base...
متن کاملVector - Valued Approximation and its Application to Fitting Exponential Decay Curves
This paper deals with characterization of best approximations to vector-valued functions. The approximations are themselves vector-valued functions with components depending nonlinearly on the approximation parameters. The constraint is imposed that certain of the parameters should be identical for all components. An application to exponential approximation is discussed in some detail.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerical Lin. Alg. with Applic.
دوره 22 شماره
صفحات -
تاریخ انتشار 2015